
AttoBASIC Version 2.20
Device Programming Instructions

Device_Programming_Instructions_V22x.rtf Page 1 of 3
Common Law Copyright ©2012 Scott Vitale All rights and remedies reserved No liability stated or assumed

Introduction

AttoBASIC Version 2.20, hereinafter referred to as AttoBASIC, supports most flavors of the ATMEL 8-
bit series of AVR microcontrollers having at least 8K FLASH memory, 1K SRAM and 512 bytes of
EEPROM.

AttoBASIC comes with pre-assembled HEX files for the ATmega88/P/A/PA, ATmega168/P/A/PA,
ATmega328/P/A/PA and ATmega32U4 microcontrollers at clock speeds of 4 MHz, 8 MHz, 16 MHz
and 20 MHz. Other clock speeds can be built from the source code and if one has the knowledge to do
so, additional commands and hardware can be added.

The only difference in the immediately supported μC's, besides the amount of memory, is that the
ATmega32U4 has a built-in USB hardware controller. Thus, the ATmega32U4 builds can be
communicated with via the USART or the USB emulating a Virtual Com Port (VCP). The free
WINDOWS® drivers are supplied with AttoBASICv2.20 in the folder entitled "_USB_Drivers". Linux
natively supports the VCP interface as either /dev/ttyACMx or /dev/ttyUSBx devices.

Most ARDUINO™ flavors and their clones use the ATmega168(P) or ATmega328(P). The
ATmega88/168/328 μC's use the USART to communicate through. Hardware platforms using those
μC's with a standard RS-232 interface are directly supported. However, the ARDUINO™-type
hardware platforms communicate through a Virtual Serial Port using a separate on-board USB to Serial
converter to make the translation to USB. This poses no problem for AttoBASIC because the hardware
is the same as a non-USB platform and no modifications to software or hardware are required.

AttoBASIC also includes pre-assembled HEX files for the aforementioned microcontrollers and clock
speeds containing the "OptiBoot" boot-loader, which is supported by the programming utility avrdude
and the ARDUINO™ development environment.

Firmware Flavor Files

AttoBASICv2.20 comes with the following pre-assembled HEX files, which are stored in the
AVR_Specific_Builds folder. There are versions with and without boot-loader support as well as with
and without USB serial I/O support for the ATmega32U4. The suffixes are self-identifying.

ATmega88(P)
ATTOBASICV220_M88‐20MHZ‐uart.hex
ATTOBASICV220_M88‐16MHZ‐uart.hex
ATTOBASICV220_M88‐8MHZ‐uart.hex
ATTOBASICV220_M88‐4MHZ‐uart.hex

ATmega328(P)
ATTOBASICV220_M328‐20MHZ‐uart_btldr.hex
ATTOBASICV220_M328‐20MHZ‐uart_nobtldr.hex
ATTOBASICV220_M328‐16MHZ‐uart_btldr.hex
ATTOBASICV220_M328‐16MHZ‐uart_nobtldr.hex
ATTOBASICV220_M328‐8MHZ‐uart_btldr.hex
ATTOBASICV220_M328‐8MHZ‐uart_nobtldr.hex
ATTOBASICV220_M328‐4MHZ‐uart_btldr.hex
ATTOBASICV220_M328‐4MHZ‐uart_nobtldr.hex

ATmega168(P)
ATTOBASICV220_M168‐20MHZ‐uart_btldr.hex
ATTOBASICV220_M168‐20MHZ‐uart_nobtldr.hex
ATTOBASICV220_M168‐16MHZ‐uart_btldr.hex
ATTOBASICV220_M168‐16MHZ‐uart_nobtldr.hex
ATTOBASICV220_M168‐8MHZ‐uart_btldr.hex
ATTOBASICV220_M168‐8MHZ‐uart_nobtldr.hex
ATTOBASICV220_M168‐4MHZ‐uart_btldr.hex
ATTOBASICV220_M168‐4MHZ‐uart_nobtldr.hex

ATmega32U4
ATTOBASICV220_M32u4‐20MHZ‐uart_btldr.hex
ATTOBASICV220_M32u4‐20MHZ‐uart_nobtldr.hex
ATTOBASICV220_M32u4‐16MHZ‐uart_btldr.hex
ATTOBASICV220_M32u4‐16MHZ‐uart_nobtldr.hex
ATTOBASICV220_M32u4‐16MHZ‐usb_btldr.hex
ATTOBASICV220_M32u4‐16MHZ‐usb_nobtldr.hex
ATTOBASICV220_M32u4‐8MHZ‐uart_btldr.hex
ATTOBASICV220_M32u4‐8MHZ‐uart_nobtldr.hex
ATTOBASICV220_M32u4‐8MHZ‐usb_btldr.hex
ATTOBASICV220_M32u4‐8MHZ‐usb_nobtldr.hex
ATTOBASICV220_M32u4‐4MHZ‐uart_btldr.hex
ATTOBASICV220_M32u4‐4MHZ‐uart_nobtldr.hex

AttoBASIC Version 2.20
Device Programming Instructions

Device_Programming_Instructions_V22x.rtf Page 2 of 3
Common Law Copyright ©2012 Scott Vitale All rights and remedies reserved No liability stated or assumed

Loading the firmware into a specific hardware platform

For most hardware platforms, using the In System Programming (ISP) feature of the AVR μC's is the
preferred method. Choose a file and clock speed that is compatible with the μC on the target platform.
Keep in mind that all "factory fresh" AVR's come with the fuse setting that enables the on-chip
oscillator and divide by 8 prescaler so the μC runs at 1 MHz. One will need to insure that the
programmer's ISP clock speed is ¼ of the μC's clock and likely wish to set the fuses to enable an
external crystal and disable the divide by 8 prescaler. Setting the AVR's fuses is beyond the scope of
this writing. Refer to target μC's datasheet and programmer's documentation for further information.

ARDUINO™: For those having an ARDUINO™ compatible platform available, the
ATmega88/168/328 firmware files with the "nobtldr" suffixes can be directly uploaded using the
avrdude utility, which is available as part of the avr-gcc software package under Linux or the WinAVR
software package under WINDOWS®.

If using the WINDOWS® OS, open a CMD window, traverse to the appropriate folder containing the
desired HEX file and issue one of the two following commands (boot-loader dependant):

avrdude.exe -V -F -p atmega328p -c arduino -P COMx -b 115200 -U flash:w:myprogram.hex

avrdude.exe -V -F -p atmega328p -c stk500v1 -P COMx -b 57600 -U flash:w:myprogram.hex

Replace "atmega328p" with the target μC, "myprogram.hex" with the desired firmware filename and
"COMx" with the actual serial port name your ARDUINO™ responds on.

If using the Linux OS (or Mac OSX?), open a terminal window, traverse to the appropriate path
containing the desired HEX file and issue one of the two following commands (boot-loader dependant):

avrdude -V -F -p atmega328p -c arduino -P /dev/ttyACMx -b 115200 -U flash:w:myprogram.hex

avrdude -V -F -p atmega328p -c stk500v1 -P /dev/ttyACMx -b 57600 -U flash:w:myprogram.hex

Replacing "atmega328p" with the target μC, "myprogram.hex" with the desired firmware filename and
"/dev/ttyACMx" with the actual serial port name your ARDUINO™ responds on (usually /dev/ttyACMx
or /dev/ttyUSBx where x is a number between 0 and 9).

Notes:
1. If avrdude responds with a "stk500_getsync(): not in sync" message, it is because the

ARDUINO™ boot-loader is not responding. Check the command line for correctness. If avrdude
continues to error with the same message, substitute either "115200", "57600", "19200" or "9600" as
the baud rate in the "-b NNNNN" option and/or power-cycle the ARDUINO™. If the problem
persists, consult other resources for remedy.

2. Do not attempt to use the ARDUINO™ boot-loader to upload a firmware file that contains a boot-
loader image as this may corrupt the existing boot-loader and render it inoperable. Those
particular firmware files are meant to be programmed with an ISP programmer and is the only way
to recover from a corrupted boot-loader.

3. AttoBASIC contains the BLDR command to invoke the resident boot-loader if one exists.
However, if the BOOTRST fuse is programmed, the resident boot-loader will automatically be
invoked. On ARDUINO™ platforms, the resident boot-loader will start the application program
after a short delay. Using AttoBASIC to invoke a boot-loader that uses the serial port may emit
non-printable characters that confuse the terminal emulator program. This will likely require a
restart of the terminal emulator program to recover. One’s particular boot-loader’s behavior may
vary …

AttoBASIC Version 2.20
Device Programming Instructions

Device_Programming_Instructions_V22x.rtf Page 3 of 3
Common Law Copyright ©2012 Scott Vitale All rights and remedies reserved No liability stated or assumed

4. AttoBASIC is using "OptiBoot" for its boot-loader support. The avrdude command line that
supports Optiboot contains "-c arduino".

a. for the ATmega168(P), the boot-loader resides at 0x1F00 and the BOOTRST fuse must be
programmed.

b. for the ATmega328(P), the boot-loader resides at 0x3F00 and the BOOTRST fuse must be
programmed.

5. The "Self-Start" feature uses PINC3 on the ATmega88/168/328 firmware images. If that feature is
not used, the I/O pin can be used as an I/O port pin without interference from AttoBASIC and does
not require an external pull-up resistor.

ATmega32U4: For those having a ATmega32U4 compatible platform available (like the ADAFRUIT
Mega32U4 Breakout Board), the ATmega32U4 firmware files with the "nobtldr" and/or "nousb"
suffixes can be programmed into the target μC using that manufacturer's programming tool. The boot-
loader incorporated into AttoBASICv2.20 for the ATmega32U4 is Dean Camera's LUFA in DFU mode.
Therefore ATMEL's FLIP programming tool can be used, which is available for the WINDOWS® and
Linux computing platforms.

Notes:
1. On the USB enabled version of the ATmega32U4 firmware, one must type a key on the terminal

emulator once a connection to the ATmega32U4 is achieved. AttoBASIC will then respond with
its sign-on message.

2. For the ATmega32U4 with boot-loader support, the boot-loader resides at 0x3800 and the
BOOTRST fuse must be programmed.

3. The "Self-Start" feature uses PIND7 on the ATmega32U4 firmware images. If that feature is not
used, the I/O pin can be used as an I/O port pin without interference from AttoBASIC and does not
require an external pull-up resistor.

